1	
2	Extracellular microRNAs in saliva
3	
4	
5	Toru Hayashi, Noriko Koyama, Kenji Mizukoshi, Yukio Azuma, and
6	Masanori Kashimata*
7	Department of Pharmacology, Asahi University School of Dentistry, 1851
8	Hozumi, Mizuho, Gifu 501-0296, Japan
9	
10	*Corresponding author: Masanori Kashimata
11	Tel: +81 058 329 1432; Fax: +81 058 329 1432
12	E-mail: matasan@dent.asahi-u.ac.jp
13	
14	E-mail addresses of all other authors:
15	payasi@dent.asahi-u.ac.jp (T. Hayashi)
16	norikoya@dent.asahi-u.ac.jp (N. Koyama)

- 17 mizukoshi@dent.asahi-u.ac.jp (K. Mizukoshi)
- 18 azuma@dent.asahi-u.ac.jp (Y. Azuma)
- 19

20 ABSTRACT

21	Background: MicroRNAs (miRNAs) are small non-coding RNAs that
22	post-transcriptionally regulate messenger RNAs. Recent studies have
23	demonstrated the presence of stable extracellular miRNAs that circulate in
24	various body fluids, including saliva. The extracellular miRNAs are known to be
25	secreted into the surrounding environment freely or within small vesicles called

- 26 exosomes. Since saliva can be easily obtained in a non-invasive manner,
- 27 salivary miRNAs are promising novel biomarkers for clinical applications.
- Highlight: Several attempts using microarrays, quantitative real-time PCR, and
- 29 high-throughput sequencing have been made to characterize salivary miRNAs.
- 30 Differences in methodology, including saliva collection and exosome purification,
- 31 can affect miRNA profiles.

32	Conclusion: This review summarizes the findings of recent reports that have
33	investigated salivary miRNAs with the aim of establishing novel clinical
34	biomarkers.
35	KEYWORDS: MicroRNA, Saliva, Exosome, Biomarker
36	1. INTRODUCTION
37	
38	In recent years, multiple studies have been devoted to the identification of novel
39	biomarkers of disease. An ideal biomarker should be able to precisely identify a
40	disease such as cancer before the clinical diagnosis is performed. To this end,
41	easily accessible and non-invasively obtained body fluids containing biomarkers
42	that reflect a disease condition are particularly useful [1]. A prime example is
43	saliva, a complex fluid produced mainly by three salivary glands, namely, the
44	parotid, submandibular, and sublingual glands [1]. Many biological components
45	in the blood, such as enzymes, enter the saliva by ultrafiltration through the
46	salivary glands. Saliva can thus be useful for monitoring the physiological

47 conditions of the human body [2]. Since human saliva can be easily,

48 non-invasively, and inexpensively obtained, various salivary biomarkers have
49 been detected for both systemic and non-systematic types of dysfunctions
50 [2,3,4,5].

52	RNAs are present in saliva. Human saliva contains more than 3000 different
53	messenger RNAs (mRNAs), although they are usually partially degraded [6,7,8].
54	Salivary mRNAs are used as biomarkers for the detection of oral cancer [6,9].
55	Saliva also contains the small non-coding RNAs called microRNAs (miRNAs),
56	that participate in the regulation of various biological events by degrading
57	mRNAs or suppressing protein translation [10,11]. The expression patterns of
58	miRNAs are tissue-specific [12]. Furthermore, it is speculated that miRNA
59	profiles are more accurate for cancer classification than mRNA profiles, although
60	miRNAs are shorter in length and fewer in species than mRNAs [13]. Numerous
61	studies using solid tissues have demonstrated that the expression profiles of
62	miRNAs are helpful in the diagnosis of human cancers [14]; similarly, miRNAs in

63 saliva are also expected to be promising biomarkers for the diagnosis and

64 prognosis of oral diseases [10,15,16,17,18].

65

66	Exosomes are small, membranous vesicles of endocytic origin that circulate in
67	the body fluids, after being released by cells into the extracellular environment
68	[19,20]. Interestingly, exosomes are known to contain miRNAs, which are
69	resistant to nucleases [21]. Exosomal miRNAs have been detected in the
70	extracellular fluids like the plasma, serum, urine, breast milk, and saliva [20,22],
71	suggesting that such miRNAs can be employed as useful biomarkers to evaluate
72	human physiological and pathological conditions. In this review, we summarize
73	the recent literature on salivary miRNAs. For miRNA analysis, some studies
74	purify exosomes from whole saliva, while others do not. We will first summarize
75	these studies and then focus on exosomal miRNAs in saliva.
76	
77	2. miRNAs in whole saliva in oral cancer

79	A number of studies have aimed at discovering miRNAs specific to saliva and
80	developing novel biomarkers for the detection of oral cancer or autoimmune
81	disease (Table 1). In their first report on salivary miRNAs, Park et al. [10]
82	hypothesized the presence of miRNAs in the saliva and their usefulness as
83	biomarkers of oral squamous cell carcinoma (OSCC). Both the whole saliva and
84	supernatant obtained by centrifugation (2,600 × g for 15 min at 4°C), were
85	collected from 50 healthy donors and 50 OSCC patients. Analysis of their
86	miRNA expression profiles revealed the presence of ~50 miRNAs in saliva.
87	These results were partly confirmed by a recent study that detected 14 of the
88	same miRNAs in whole saliva from healthy donors [23]. Park et al.'s comparison
89	of the miRNAs between the healthy donors and OSCC patients found that the
90	expression levels of two miRNAs, miR-125a-5p and miR-200a-3p, were
91	significantly lower in the saliva of the OSCC patients than those of the healthy
92	donors [10]. Importantly, this report demonstrated the stability of miRNAs in
93	saliva. The endogenous salivary miRNA miR-191-5p exhibited higher stability
94	than an miRNA added exogenously to the saliva, suggesting that salivary

95	miRNAs are protected from degradation by RNase. Given that exosomal
96	miRNAs show resistance to RNase because they are packaged in exosomes
97	[21], it can be speculated that the salivary miRNAs studied by Park et al. were
98	also inside the exosomes, although the authors did not perform any purification
99	of exosomes.
100	Some researchers have attempted to stage cancers on the basis of salivary
101	miRNAs [17,18]. Oral cancer progresses through multiple stages: low-grade
102	dysplasia (LGD), high-grade dysplasia (HGD), and finally, invasive OSCC [24].
103	Although only a small proportion of LGDs may progress to carcinomas [25],
104	"progressive" and "non-progressive" LGDs cannot be distinguished on the basis
105	of their clinical and histological characteristics [26]. In order to evaluate the risk
106	of malignant transformation, miRNA biomarkers were explored in the saliva [18],
107	and five salivary miRNAs, namely, miR-10b-3p, miR-145-5p, miR-99b-5p,
108	miR-708-5p, and miR-181c-5p, were found to show significantly different
109	expression levels between progressive and non-progressive LGD patients.
110	miR-10b-3p and miR-708-5p were upregulated in the saliva from progressive

111	LGD patients. Conversely, the other three salivary miRNAs, miR-181c-5p,
112	miR-145-5p, and miR-99b-5p, were downregulated in the progressive LGD
113	samples, unlike that in case of the non-progressive LGD. The authors concluded
114	that the detection of salivary miRNAs is a promising non-invasive method for risk
115	assessment of LGD premalignant oral lesions [18]. Additionally, salivary
116	miRNAs have also been considered as promising biomarkers for detecting
117	esophageal cancer (EC) [17]. Three miRNAs in whole saliva, i.e., miR-10b-3p,
118	miR-144-3p, and miR-451a, were significantly upregulated in EC patients.
119	Likewise, saliva supernatant from EC patients contained miR-21-5p in addition
120	to the above three miRNAs, at higher levels than that in the healthy donors. The
121	authors also suggested that using the supernatant is better than using the whole
122	saliva for the detection of EC, since saliva may be contaminated with EC cells
123	detached from the esophagus [17]. The above two studies also extracted RNAs
124	from the saliva without exosome purification [17,18]. Therefore, it is unclear
125	whether the miRNA biomarker candidates are vesicle-free or in the exosomes.

126Moreover, saliva purification to obtain exosomes may give rise to different 127 miRNA profiles compared with the results obtained by using whole saliva. 1281293. miRNAs specific to saliva 130 131 To our knowledge, only one report proposes that some miRNAs are specific to saliva, and these miRNAs are not found in other body fluids. In 2010, the profiles 132133 and distribution of extracellular miRNAs in 12 body fluids, including saliva, were 134examined [27]. The study investigated two different types of body fluids, based on whether they had been obtained by invasive or non-invasive procedures. The 135136fluids acquired non-invasively were breast milk, colostrum, seminal fluid, tears, 137urine, and saliva. The fluids that were acquired only by invasive means were 138amniotic fluid, bronchial lavage, cerebrospinal fluid, plasma, pleural fluid, and 139peritoneal fluid. All the samples were briefly centrifuged (at $1000 \times g$ for 10 min) 140 before RNA extraction. Thus, it is possible that these samples still contained 141 exosomes, which can be obtained only by extra purification. Interestingly, saliva

142	was found to contain the highest number of detectable miRNAs, 458 species.
143	Moreover, comparison of the detected miRNAs among the tested fluids showed
144	that 11 miRNAs were unique to saliva (Table 1). The most abundant species in
145	saliva was miR-335-3p, which was also the most abundant in several other body
146	fluids like plasma, tears, breast milk, and cerebrospinal fluid. The authors
147	conclude that fluid-specific miRNAs may have functions related to their
148	surrounding tissues [27].
149	
150	4. Exosomal miRNAs in saliva
151	
152	Since the 2007 report that exosomes contain miRNAs [21], exosomal miRNAs
153	have been considered to have significant potential as biomarkers for disease
154	diagnosis [28,29,30]. Three recent studies have purified exosomes from the
155	saliva and identified the exosomal miRNAs [15,16,31]. In the first report [15],
156	Michael et al. obtained saliva from healthy donors and Sjögren's syndrome
157	subjects. Saliva was collected from the parotid and submandibular/sublingual

158	glands and the exosomes were purified by ultracentrifugation (160, 000 \times <i>g</i> for 1
159	h at 4°C). The mean total concentration of RNA isolated from the salivary
160	exosomes obtained from the parotid and submandibular/sublingual glands was
161	209 pg/µL and 274 pg/µL, respectively. For the characterization of exosomal
162	miRNAs, microarray analyses were carried out using probe sets consisting of
163	757 miRNAs. Twenty-one miRNAs were found to be the most highly expressed
164	species in the salivary exosomes (Table 1). Although this proof of concept study
165	demonstrated some differences in the miRNA species between the healthy and
166	Sjögren's syndrome subjects, the differences in the miRNA patterns were not
167	considered to be indicative of any disease-specific conditions [15].
168	
169	Contrary to the studies on exosomal miRNAs, some reports demonstrated that a
170	striking percentage of circulating miRNAs in the serum are outside the
171	exosomes and bound to RNA-binding proteins such as lipoproteins,
172	Nucleophosmin 1 (NPM1), and Argonaute 2 (Ago2) [32,33,34,35]. To examine
173	whether most salivary miRNAs exist outside the exosomes, Gallo et al [16]

174	performed ultracentrifugation of saliva and serum in order to obtain the
175	exosomes and the exosome-depleted supernatant. Using these samples,
176	relative expression levels were examined for 13 selected miRNA species that
177	are either ubiquitously expressed or have been reported to be biomarkers. Four
178	of the miRNAs were known to occur in saliva (Table 1) [16]. Analysis by
179	quantitative real-time PCR (qRT-PCR) showed that most miRNAs detected in
180	the exosome-depleted supernatant were below the lower limit of reliable
181	detection (Ct > 35) [16]. On the other hand, despite using equal amounts of RNA
182	for qRT-PCR analysis, the miRNAs were found to be more enriched in
183	exosomes than in the supernatant, implying that most extracellular miRNAs in
184	the serum and saliva are concentrated in exosomes. Although this result is
185	inconsistent with that obtained from previous studies which showed that most
186	circulating miRNAs are exosome-free [33,34,35], the authors suggested that the
187	difference between the two results may have been due to the inefficient lysis of
188	exosomes during RNA extraction in their study [16].

190	Recently, Ogawa et al. used the next-generation sequencing (NGS) technique to
191	profile exosomal miRNAs in saliva [31]. NGS has two advantages for miRNA
192	profiling: the high-throughput sequencing in RNA analysis generates millions of
193	short reads and enables absolute quantification of all miRNA species that are
194	19-23 nucleotides in length. Therefore, NGS facilitates direct comparison of the
195	expression levels of different miRNAs, without any endogenous control. The
196	second advantage is that NGS generates data in nucleotides, rather than signal
197	intensity, as in the case of microarray analysis. The probe sets on microarrays
198	are usually designed for miRNAs already reported in previous studies. However,
199	NGS can read nucleotides directly, regardless of whether the miRNAs have
200	been identified, and thus has the potential to discover novel miRNAs. Ogawa et
201	al. proposed that based on their size, two different exosomes, namely, exosome
202	I and exosome II, exist in the saliva [31]. NGS analyses led to the detection of
203	173, 212, and 280 miRNAs in exosome I, exosome II, and the whole saliva,
204	respectively. Out of the 40 most-highly expressed miRNAs in each sample,
205	hsa-mir-378a, followed by hsa-mir-143, showed the highest expression level in

206	each of the two different exosomes and whole saliva. Additionally, 36 species of
207	abundant miRNAs were detected in both exosome I and exosome II, suggesting
208	that the majority of miRNAs in human saliva can be sorted into exosomes,
209	irrespective of their size.
210	
211	
212	5. Future directions and conclusions
213	
214	In this review, we have summarized the findings of recent studies on salivary
215	miRNAs. There are numerous differences among these studies (Table 1) in
216	terms of the saliva volume, number of analytes, profiling methods, and additional
217	purification steps to obtain exosomes. For example, the number of registered
218	miRNAs has increased every few years, resulting in various updates of the
219	analyses platforms for miRNA profiling. This may cause differences in the
220	detection of salivary miRNAs since the earlier platforms were unable to detect
221	newly identified miRNA species. Furthermore, the procedure for saliva collection

222	may affect the detected miRNA profiles. At an October 2012 workshop of the
223	International Society for Extracellular Vesicles (ISEV) in New York City, USA,
224	the importance of experimental factors such as the time, instructions to subjects,
225	and techniques for saliva collection (e.g., saliva stimulation) were emphasized
226	[22]. Previously six of eight studies collected unstimulated saliva, while the other
227	two stimulated saliva production using citric acid [15,17]; nevertheless, it is
228	unclear how stimulation influences the salivary miRNA profile [22]. At the 2012
229	ISEV workshop, it was noted that a consensus regarding sample collection
230	methods must be promptly established by a large number of experts after
231	performing well-controlled experiments [22].
232	
233	More importantly, there is a severe lack of experimental data on the
234	physiological functions of salivary miRNAs. A fundamental question to consider
235	is, why does saliva contain miRNAs? The presence of exosomal miRNAs in the
236	saliva raises the possibility that salivary miRNAs are involved in cell-cell or
237	tissue-tissue communication. Exosomes are known to be secreted from donor

238	cells and taken up by recipient cells, resulting in the downregulation of target
239	genes by functional miRNAs packaged in the exosomes [20]. Therefore, various
240	cells of the oral cavity may take up exosomal miRNAs from the saliva in order to
241	regulate physiological conditions such as oral homeostasis. Furthermore, it is
242	interesting to note that miRNAs in exosomes are resistant to acidic conditions
243	(pH 1) as well as nucleases [36], and these characteristics of exosomes may
244	allow salivary miRNAs to survive the gastrointestinal environment and be
245	absorbed in the intestines [36].
246	
246 247	Gene therapy using artificial miRNAs in exosomes is also thought to be
246 247 248	Gene therapy using artificial miRNAs in exosomes is also thought to be beneficial because of the characteristics of exosomes in the saliva. Interestingly,
246247248249	Gene therapy using artificial miRNAs in exosomes is also thought to be beneficial because of the characteristics of exosomes in the saliva. Interestingly, a recent report showed a mechanism by which miRNAs are selected for
 246 247 248 249 250 	Gene therapy using artificial miRNAs in exosomes is also thought to be beneficial because of the characteristics of exosomes in the saliva. Interestingly, a recent report showed a mechanism by which miRNAs are selected for packaging into exosomes in primary T lymphoblasts (Figure 1) [37].
 246 247 248 249 250 251 	Gene therapy using artificial miRNAs in exosomes is also thought to be beneficial because of the characteristics of exosomes in the saliva. Interestingly, a recent report showed a mechanism by which miRNAs are selected for packaging into exosomes in primary T lymphoblasts (Figure 1) [37]. Villarroya-Beltri et al. identified sequence motifs (mainly GGAG or CCCU) in
 246 247 248 249 250 251 252 	Gene therapy using artificial miRNAs in exosomes is also thought to be beneficial because of the characteristics of exosomes in the saliva. Interestingly, a recent report showed a mechanism by which miRNAs are selected for packaging into exosomes in primary T lymphoblasts (Figure 1) [37]. Villarroya-Beltri et al. identified sequence motifs (mainly GGAG or CCCU) in exosomal miRNAs [37]. Pull-down assays using biotinylated miRNA in

254	suggesting that miRNAs bound to hnRNPA2B1 are preferentially sorted into
255	exosomes. Point mutations in miRNAs reveal that the binding of hnRNPA2B1 to
256	exosomal miRNAs depends on the presence of the sequence motifs. The
257	authors suggest that the role of hnRNPA2B1 in loading miRNAs into exosomes
258	is related to its ability to interact with cytoskeletal components [38]. Furthermore,
259	small ubiquitin-related modifier (SUMO) is attached to hnRNPA2B1 found in
260	exosomes. Modification by SUMO affects the functions of proteins by changing
261	their stability, localization, and ability to interact with other proteins [39].
262	Therefore, it is suggested that sumoylation controls the binding of hnRNPA2B to
263	miRNAs and sorts them into exosomes [37]. These findings may prove helpful
264	for the development of gene therapy using artificial miRNAs packaged into
265	exosomes in saliva.
266	
267	Isolation of salivary miRNAs may lead to the discovery of novel biomarkers for
268	the diagnosis of diseases such as oral cancer. Similarly, profiles of salivary
269	miRNAs may provide information on the physical, physiological, and mental

270	conditions of patients. The investigation of salivary miRNAs is still in the
271	preliminary stages. Additional studies are required to confirm the applicability
272	and usefulness of extracellular salivary miRNAs for the diagnosis of diseases
273	and gene therapy.
274	
275	
276	Ethical Approval
277	Ethics committee approval and informed consent are not required for this review.
278	
279	Conflict of interest
280	There are no potential conflicts of interest to be disclosed.
281	
282	Acknowledgments
283	This work was supported by the Grant for Basic Science Research Projects from
284	The Sumitomo Foundation.
285	

286 **References**

- [1] Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material:
- biochemical, physicochemical and practical aspects. Arch Oral Biol.
- **290 2007;52:1114–35**.
- [2] Spielmann N, Wong DT. Saliva: diagnostics and therapeutic perspectives.
- 292 Oral Dis. 2011;17:345–54.
- [3] Aps JK, Martens LC. Review: The physiology of saliva and transfer of drugs
- 294 into saliva. Forensic Sci Int. 2005;150:119–31.
- [4] Lawrence HP. Salivary markers of systemic disease: noninvasive diagnosis
- of disease and monitoring of general health. J Can Dent Assoc. 2002;68:170–4.
- [5] Forde MD, Koka S, Eckert SE, Carr AB, Wong DT. Systemic assessments
- 298 utilizing saliva: part 1 general considerations and current assessments. Int J
- 299 Prosthodont. 2006;19:43–52.

- 300 [6] Li Y, St John MA, Zhou X, Kim Y, Sinha U, Jordan RC, Eisele D, Abemayor E,
- 301 Elashoff D, Park NH, Wong DT. Salivary transcriptome diagnostics for oral
- 302 cancer detection. Clin Cancer Res. 2004;10:8442–50.
- 303 [7] Park NJ, Li Y, Yu T, Brinkman BM, Wong DT. Characterization of RNA in
- 304 saliva. Clin Chem. 2006;52:988–94.
- 305 [8] Park NJ, Zhou X, Yu T, Brinkman BM, Zimmermann BG, Palanisamy V,
- 306 Wong DT. Characterization of salivary RNA by cDNA library analysis. Arch Oral
- 307 Biol. 2007;52:30–5.
- 308 [9] Li J, Helmerhorst EJ, Troxler RF, Oppenheim FG. Identification of *in vivo*
- 309 pellicle constituents by analysis of serum immune responses. J Dent Res.
- 310 2004;83:60-4.
- [10] Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E,
- 312 Wong DT. Salivary microRNA: discovery, characterization, and clinical utility for
- oral cancer detection. Clin Cancer Res. 2009;15:5473–7.
- [11] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell
- 315 **2009;136:215–33**.

- [12] Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S,
- 317 Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V,
- 318 Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B,
- Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D,
- 320 Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R,
- Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T,
- Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C,
- 323 Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small
- 324 RNA library sequencing. Cell 2007;129:1401–14.
- 325 [13] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D,
- 326 Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T,
- 327 Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers.
- 328 Nature 2005;435:834–8.
- [14] Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. MicroRNAs in
- ancer management. Lancet Oncol. 2012;13:e249–e58.

- [15] Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I.
- 332 Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis.
- **2010;16:34–8**.
- [16] Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs
- 335 detectable in serum and saliva is concentrated in exosomes. PloS One
- 336 **2012**;7:**e**30679.
- [17] Xie Z, Chen G, Zhang X, Li D, Huang J, Yang C, Zhang P, Qin Y, Duan Y,
- 338 Gong B, Li Z. Salivary microRNAs as promising biomarkers for detection of
- esophageal cancer. PloS One 2013;8:e57502.
- [18] Yang Y, Li YX, Yang X, Jiang L, Zhou ZJ, Zhu YQ. Progress risk
- 341 assessment of oral premalignant lesions with saliva miRNA analysis. BMC
- 342 Cancer 2013;13:129.
- 343 [19] Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and
- 344 function. Nat Rev Immunol. 2002;2:569–79.
- 345 [20] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles,
- and friends. J Cell Biol. 2013;200:373–83.

- 347 [21] Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO.
- 348 Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of
- genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.
- 350 [22] Witwer KW, Buzás EI, Bemis LT, Bora A, Lasser C, Lötvall J, Nolte-'t Hoen
- EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F.
- 352 Standardization of sample collection, isolation and analysis methods in
- extracellular vesicle research. J Extracell Vesicles 2013;2:20360.
- [23] Patel RS, Jakymiw A, Yao B, Pauley BA, Carcamo WC, Katz J, Cheng JQ,
- 355 Chan EK. High resolution of microRNA signatures in human whole saliva. Arch
- 356 Oral Biol. 2011;56:1506–13.
- 357 [24] Napier SS, Speight PM. Natural history of potentially malignant oral lesions
- and conditions: an overview of the literature. J Oral Pathol Med. 2008;37:1–10.
- [25] Wright JM. A review and update of oral precancerous lesions. Tex Dent J.
- **360 1998;115:15–9**.
- [26] Bouquot JE, Weiland LH, Kurland LT. Leukoplakia and carcinoma in situ
- 362 synchronously associated with invasive oral/oropharyngeal carcinoma in

- 363 Rochester, Minn., 1935-1984. Oral Surg Oral Med Oral Pathol. 1988;65:199–
 364 207.
- 365 [27] Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ,
- Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–
 41.
- [28] Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M,
- 369 Curry WT, Jr., Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma
- 370 microvesicles transport RNA and proteins that promote tumour growth and
- provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.
- [29] Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived
- exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol.
- **3**74 **2008;110:13–21**.
- [30] Zhou H, Cheruvanky A, Hu X, Matsumoto T, Hiramatsu N, Cho ME, Berger
- 376 A, Leelahavanichkul A, Doi K, Chawla LS, Illei GG, Kopp JB, Balow JE, Austin
- HA, 3rd, Yuen PS, Star RA. Urinary exosomal transcription factors, a new class
- of biomarkers for renal disease. Kidney Int. 2008;74:613–21.

- [31] Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. Small RNA
- transcriptomes of two types of exosomes in human whole saliva determined by
- next generation sequencing. Biol Pharm Bull. 2013;36:66–75.
- [32] Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and
- 383 microRNA-protective protein by mammalian cells. Nucleic Acids Res.
- 384 **2010;38:7248–59**.
- [33] Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell
- 386 PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M.
- 387 Argonaute2 complexes carry a population of circulating microRNAs independent
- 388 of vesicles in human plasma. Proc Nat Acad Sci U S A. 2011;108:5003–8.
- [34] Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of
- extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33.
- [35] Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT.
- 392 MicroRNAs are transported in plasma and delivered to recipient cells by
- high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.

- [36] Kosaka N, Izumi H, Sekine K, Ochiya T. MicroRNA as a new
- immune-regulatory agent in breast milk. Silence 2010;1:7.
- 396 [37] Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F,
- 397 Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ,
- 398 Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated
- 399 hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to
- 400 specific motifs. Nat Commun. 2013;4:2980. doi: 10.1038/ncomms3980.
- 401 [38] Carson JH, Barbarese E. Systems analysis of RNA trafficking in neural cells.
- 402 Biol Cell. 2005;97:51–62.
- 403 [39] Hay RT. SUMO: a history of modification. Mol Cell. 2005;18:1–12.

404

405

406

407

408

414	Figure 1. Proposed mechanism for the sorting of miRNAs into exosomes.
415	Small vesicles accumulate within multi-vesicular bodies (MVBs) during
416	endosome maturation. Since the small vesicles are created by budding inside
417	the MVBs, cytosolic components are incorporated into them. In the cytoplasm,
418	heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is modified by
419	small ubiquitin-related modifier (SUMO). The sumoylated-hnRNPA2B1 then
420	binds to miRNAs harboring specific sequence motifs. During the internal budding,
421	the hnRNPA2B1-miRNA complexes are preferentially packaged into the vesicles
422	[37]. MVBs fuse with the plasma membrane and release the small vesicles
423	(exosomes) into the extracellular environment in an exocytic manner.
424	