@article{oai:asahi-u.repo.nii.ac.jp:00003321, author = {Takenaka, Yoshihiro and Iijima, Mayumi and 河野, 哲 and KAWANO, SATOSHI and Akita, Yasumitsu and Yoshida, Takakazu and Doi, Yutaka and 関根, 一郎 and SEKINE, ICHIRO}, issue = {9}, journal = {Journal of endodontics}, month = {Jan}, note = {application/pdf, The current report describes the properties of a new apical barrier material formulated from carbonate-containing apatite (CAp) and collagen. CAp particles of around 50 nm were deposited on reconstituted collagen fibers. CAp/col with about 60 wt % CAp (corresponding to apatite content of bone) was obtained after 1 day of calcification. CAp content increased up to about 80 wt % in a 15-day calcification reaction. CAp/col was composed of fine calcified collagen fibers. The crystallinity and Ca/PO(4) ratio of CAp were comparable to those of bone apatite. The mixture of CAp/col and saline reached a pH of about 9. The optimum powder-to-liquid ratio (P/L) to set into a root canal was determined to be 1.2. Furthermore, the mixture (P/L = 1.2) condensed in a root canal was liquid permeable. Thus, the CAp/col was expected as an apical barrier material with osteoconductivity., The current report describes the properties of a new apical barrier material formulated from carbonate-containing apatite (CAp) and collagen. CAp particles of around 50 nm were deposited on reconstituted collagen fibers. CAp/col with about 60 wt % CAp (corresponding to apatite content of bone) was obtained after 1 day of calcification. CAp content increased up to about 80 wt % in a 15-day calcification reaction. CAp/col was composed of fine calcified collagen fibers. The crystallinity and Ca/PO(4) ratio of CAp were comparable to those of bone apatite. The mixture of CAp/col and saline reached a pH of about 9. The optimum powder-to-liquid ratio (P/L) to set into a root canal was determined to be 1.2. Furthermore, the mixture (P/L = 1.2) condensed in a root canal was liquid permeable. Thus, the CAp/col was expected as an apical barrier material with osteoconductivity.}, pages = {1096--1100}, title = {The development of carbonate-containing apatite/collagen composite for osteoconductive apical barrier material.}, volume = {34}, year = {2008} }